
gmeteor User’s Manual
For version 0.95, 22 October 2007

Matteo Frigo

Copyright c© 2000 Matteo Frigo.

Copyright c© 2000 Biomedin s.r.l.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

Chapter 1: Introduction 1

1 Introduction

gmeteor is a tool for designing discrete-time equiripple filters with linear phase and a finite
impulse response (FIR). gmeteor runs on systems that support the Guile extension language
from the GNU project (for example, GNU systems running on a Linux kernel). gmeteor is
free software distributed under the terms of the GNU General Public License (GPL). See
Chapter 5 [License and Copyright], page 25, for details. gmeteor is a powerful filter-design
tool because of the following three reasons.

1. gmeteor can design FIR filters with an arbitrary frequency response. You can even
specify the frequency response analytically. In contrast, with other filter-design tools
you are limited to piecewise-constant or piecewise-linear frequency responses.

2. gmeteor supports two filter design styles: the approximation style and the limit style.
In the approximation style, you specify the desired frequency response of the filter, and
gmeteor finds the “best” feasible approximation. (This style is used by the popular
Parks-McClellan filter design program.) In the limit style, you specify upper and lower
bounds on the frequency response, and gmeteor finds a frequency response that satisfies
the bounds. With gmeteor, you can freely intermix the two styles whenever it makes
sense.

3. Since gmeteor employs an extension language (specifically, the Scheme programming
language), you can program it to solve your own filter-design problems. For example,
I have used gmeteor to find the optimal minimum-length filter satisfying a given set of
constraints, to produce many variations of a given filter, and to produce a ‘C’ source file
that implements a given filter. Because a full programming language is always available
in gmeteor, you can customize the tool to solve your own problems, rather than being
limited to what the gmeteor’s author had in mind when he wrote the program.

A filter, for the purposes of this manual, is a linear time-invariant signal-processing
system that is designed to modify certain frequencies relative to others. For example, a sys-
tem that eliminates all frequencies above 3500Hz and does not modify lower frequencies is a
“low-pass” filter. (A similar system may be used in your phone.) This manual assumes that
you are familiar with filters and discrete-time signal processing (also called “digital signal
processing”). Otherwise, many textbooks on the subject are available, such as Discrete-
Time Signal Processing, by Alan Oppenheim and Ronald Schafer. Without much signal
processing knowledge, you can understand this manual and use gmeteor at an intuitive
level, but in order to exploit gmeteor fully, a systematic training in the signal-processing
field is desirable.

gmeteor is based on the algorithm described in the paper METEOR: a Constraint-based
FIR Filter Design Program, by K. Steiglitz, T. W. Parks, and J. F. Kaiser, published in
IEEE Trans. Signal Processing, vol. 40, no. 8, pp. 1901-1909, August 1992. (Both the paper
and the METEOR program are available at http://www.music.princeton.edu/classes/
). In this beautiful and very readable paper, Steiglitz et al. reduce the filter design problem
to a linear programming problem, which in turn is solved by the simplex algorithm. This
filter-design methodology is elegant and very general, but unfortunately, the METEOR
program falls short of implementing the methodology in its full generality. For example,
the algorithm in the paper can approximate arbitrary frequency responses, but METEOR
is restricted to piecewise linear or exponential functions. gmeteor implements the ideas

http://www.music.princeton.edu/classes/
http://www.music.princeton.edu/classes/

2 gmeteor

described in the METEOR paper without imposing arbitrary restrictions on the METEOR
algorithm.

gmeteor is user-friendly: simple filters can be designed easily, but complicated filters are
possible. To design a filter with gmeteor, you must first prepare a specification file that
describes the desired filter. If the specification file is called ‘myfilter’ (for example), you
design the filter by invoking ‘gmeteor myfilter’. A simple specification file could be the
following:

(sampling-frequency 8000)

(filter-length 21)

(limit-= (band 0 2000) 1)

(limit-= (band 3000 4000) 0)

(go)

The previous specification file describes a low-pass filter of length 21. The sampling
frequency is 8000Hz, the frequency response has magnitude 1 for frequencies between 0Hz
and 2000Hz, and the frequency response is 0 for frequencies between 3000Hz and 4000Hz.

The specification file is actually a program written in the Scheme programming language
(which accounts for the many parentheses in the example). You need to know Scheme if
you want to use gmeteor’s advanced features, but in most cases and for most users, no
knowledge of Scheme is required.

The rest of this manual is organized as follows. The tutorial chapter, Chapter 2 [Tutorial],
page 3, explains how to use gmeteor with a series of examples. The reference chapter,
Chapter 3 [gmeteor Reference], page 17, documents gmeteor systematically. Chapter 4
[Installation], page 23 explains how to install gmeteor on your system. Chapter 5 [License
and Copyright], page 25 gives license and copyright information.

Chapter 2: Tutorial 3

2 Tutorial

The goal of this chapter is to show several examples of gmeteor’s usage. These examples
should be sufficient to let you design simple filters quickly (i.e., within minutes.) Before
showing the examples, however, in Section 2.1 [Filter Design], page 3 we briefly review basic
concepts about filters and filter design.

2.1 Filter Design

In this section, we briefly review basic concepts about filters and filter design.

A filter is a signal-processing system that is meant to modify certain frequencies relative
to others. For example, the “tone” control in your CD player is a filter that modifies the
relative level of high and low frequencies. It is not fruitful for us to specify more precisely
which systems are filters and which are not; the important point is that, in a filter, we
mostly care about how the filter reacts to different frequencies.1

Researchers have identified many classes of useful filters, and in addition, any given filter
can be implemented using a variety of technologies. For example, an old CD player might
implement the tone control by means of resistors or capacitors, but a new CD player likely
implements the filter in software. In this manual, we do not worry about the implementation
technology, and we view the filter as a black box that inputs a certain signal x(t) (a function
of time), and outputs another signal y(t).

gmeteor designs a specific class of filters, namely, linear time-invariant discrete-time
linear-phase filters with a finite impulse response (FIR). For these filters, the time variable
t is an integer, and the input and output signals can be viewed as equispaced samples of a
continous signal. Other classes of filters are also important and useful, but we do not worry
about them here, because gmeteor only knows about FIR filters.

A FIR filter can be described by a sequence of l real numbers h0, h1, . . . , hl−1, called the
impulse response of the filter. The number l is called the filter length. The relation between
the input and the output is expressed by the following formula.

yt =
l−1∑
i=0

hixt−i

(This kind of expression is usually called a (linear) convolution.)

The filter coefficients hi uniquely determine the frequency response H(f) of the filter,
which is a complex function of the frequency f . The frequency response is important
because of the following two facts. First, every “interesting” signal can be decomposed into
a (possibly infinite) sum of sine waves. Second, a FIR filter transforms a sine wave into
a sine wave of the same frequency. If the input sine wave has amplitude 1 and frequency
f , the output sine wave has frequency f , amplitude |H(f)|, and its phase is shifted by
argH(f) with respect to the input signal. Consequently, by selecting H(f) appropriately,
we can design a filter that modifies frequencies in any way we desire.

The function H(f) is the discrete-time Fourier transform of the filter coefficients, and
well-known ways exist to compute the frequency response from the filter coefficients and vice

1 In the same way, the meat of a pig becomes “pork” only if you intend to eat it, and it is not fruitful to
argue about the precise time when the pig becomes pork.

4 gmeteor

versa. Unfortunately, it turns out that most frequency responses can only be implemented
with a filter of infinite length. If we are to implement these filters in practice, we must
settle for an approximation of the desired frequency response. The filter design problem is
therefore the problem of finding a “good” approximation to the desired H(f) with a finite
(and hopefully small) filter length.

With gmeteor, you address the filter design problem by specifying constraints on the
desired frequency response and possibly on its first and second derivatives. gmeteor then
finds the coefficients that best approximate these constraints. More precisely, gmeteor

designs optimal filters in the Chebyshev sense. (The precise mathematical description the
problem solved by gmeteor is given in Section 3.1 [Optimal Filters], page 17.) The rest
of this chapter explains the various kinds of constraints that gmeteor supports, what they
mean, and how to specify them.

2.2 Example 1

The purpose of this example is to teach you the basic usage of gmeteor. We start with a
simple design, a low-pass filter of length 10. The sampling frequency is 60Hz, the passband
is [0..10], and the stopband is [20..30]. The desired frequency response is 1 in the passband,
and 0 in the stopband. (The frequency response in the transition band [10..20] is not
specified.) This is an instance of the approximation design style: we specify the ideal
response, and let gmeteor approximate it.

In order to design the filter, you must create a file called ‘example-1.scm’ with the
following contents.

; A simple filter

(title "A simple filter")

(verbose #t)

(cosine-symmetry)

(filter-length 10)

(sampling-frequency 60)

(limit-= (band 0 10) 1)

(limit-= (band 20 30) 0)

(output-file "example-1.coef")

(plot-file "example-1.plot")

(go)

Then, you must invoke gmeteor as follows.

gmeteor example-1.scm

Chapter 2: Tutorial 5

You can plot the file ‘example-1.plot’, obtaining a graph of the frequency response like
the following.

0 5 10 15 20 25 30
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f

H
(f

)

As mentioned in Chapter 1 [Introduction], page 1, the specification file ‘example-1.scm’
is a program written in the Scheme programming language, but do not worry if you do not
know Scheme. All you need to know is that the file consists of a sequence of commands,
and that each command is enclosed within a pair of parenteses, as in (filter-length 10).
Do not forget these parentheses, because Scheme requires them. In the rest of this section,
we discuss the meaning of each command individually.

The first line

; A simple filter

is a comment. Comments are introduced by a single semicolon and last until the end of
the line. You can add comments anywhere you wish.

The expression (title "A simple filter") specifies an optional title for the filter. The
title does not affect the computation in any way, and it is used for documentation purposes.
The title appears in the output file when gmeteor runs in verbose mode.

The command (verbose #t) tells gmeteor to run in verbose mode. In Scheme, the
expression #t denotes the boolean true value, while #f denotes the false value. In non-
verbose mode, gmeteor outputs the filter coefficients (and nothing else) to the output file.
In verbose mode, gmeteor prints additional information such as the title, the sampling
frequency, and so on.

The command (cosine-symmetry) specifies that the frequency responseH(f) is an even
function. In linear-phase FIR filters—the only kind gmeteor knows about—H(f) is either
an even or an odd function of f . A function H(f) is even whenever H(f) = H(−f), and
odd whenever H(f) = −H(−f). To obtain an odd frequency response, use the command
(sine-symmetry). If neither symmetry is specified, (cosine-symmetry) is the default.

The command (filter-length 10) specifies the length of the filter. In this case, the
designed filter has 10 coefficients.

6 gmeteor

The command (sampling-frequency 60) sets the sampling frequency to 60Hz.

The command (limit-= (band 0 10) 1) specifies the passband constraint: the fre-
quency response is 1 for frequencies in the band [0..10]. The expression (band A B) creates
a band, i.e., the interval of frequencies from A to B. The expression (limit-= band value)

specifies that the frequency response should be equal to value in the band band. (gmeteor
provides additional constructs (limit-<= band value) and (limit->= band value) to set
upper and lower bounds to the frequency response, respectively. See Section 2.7 [Example
6], page 12.)

In a similar fashion, the command (limit-= (band 20 30) 0) specifies the stopband
constraint, namely, the frequency response should be 0 in the stopband [20..30].

The command (output-file "example-1.coef") sets the name of the output file,
which contains the filter coefficients. In verbose mode, the output file also contains ad-
ditional information. If the output file is not specified, gmeteor prints to standard output.
If the output file is ‘#f’, gmeteor prints nothing.

The command (plot-file "example-1.plot") sets the name of the plot file, which
contains a sequence of (x, y) pairs, where y = H(x) and H is the frequency response. You
can use ‘gnuplot’ or ‘graph’ to view the plot file. (See Info file ‘plotutils’, node ‘graph’.)
If the plot file is not specified, gmeteor does not produce a plot.

Finally, the command (go) tells gmeteor to compute the filter and produce the desired
output files. Do not omit this line, otherwise gmeteor will exit silently without doing
anything.

2.3 Example 2

In this example, we introduce the concept of weight. Recall that in most cases, the desired
frequency response can only be approximated. It turns out that the “optimal” approxi-
mation exhibits a ripple around the desired frequency response. Using weights, you can
decrease the amplitude of the ripple within certain bands at the cost of a larger ripple am-
plitude in other bands. Specifically in this example, we want to reduce the approximation
error in the passband at the expense of a larger error in the stopband, in such a way that
the maximum error in the passband is one fifth of the maximum error in the stopband.
This goal can be attained with the following specification file.

; parameters as in Example 1

(title "A simple filter II")

(verbose #t)

(cosine-symmetry)

(filter-length 10)

(sampling-frequency 60)

(output-file "example-2.coef")

(plot-file "example-2.plot")

; new specifications

(limit-= (band 0 10) 1 .2) ; .2 is the weight

(limit-= (band 20 30) 0) ; no weight specified ==> weight = 1

(go)

Chapter 2: Tutorial 7

A graph of the frequency response follows.

0 5 10 15 20 25 30
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f

H
(f

)

Intuitively, this specification says that the passband [0..10] has weight .2, and therefore
the passband error will be one fifth of the error in the stopband [20..30], where the weight is
1. gmeteor always finds the filter that minimizes the error over the whole frequency range.
Unless you specify weights explicitly, gmeteor distributes the error uniformly over all bands.
If you do specify weights, however, gmeteor spreads the error in each band according to its
weight.

The previous intuitive explanation suffices for simple cases, but we need a more precise
definition of a weight in order to design more complicated filters. To this extent, we now
discuss the operation of gmeteor in more detail.

gmeteor’s ultimate task is to find a frequency response H(f) that satisfies certain upper-
and lower-bound constraints. For example, we might specify that H([0..10]) ≤ 1.1 and that
H([0..10]) ≥ 0.9. Whenever you specify equality constraints with the limit-= command,
gmeteor internally converts them into a pair of inequality constraints. In our example,
gmeteor converts the specifications into the four constraints H([0..10]) ≤ 1, H([0..10]) ≥ 1,
H([20..30]) ≤ 0, and H([20..30]) ≥ 0. Since these constraints are impossible to satisfy
exactly with a FIR filter, gmeteor somewhat relaxes these constraints in order to compute
the “optimal” approximation.

The constraint-relaxation algorithm works by introducing a deviation parameter, de-
noted by y. Specifically in our example, gmeteor rewrites the four constraints in this way:
H([0..10])+w1y ≤ 1, H([0..10])−w2y ≥ 1, H([20..30])+w3y ≤ 0, and H([20..30])−w4y ≥ 0.
(Note that the sign in front of wiy depends on the sense of the inequality.) The parameters
wi are the weights. In our example, w1 = w2 = .2 and w3 = w4 = 1.

The optimal filter is defined as the one that maximizes y.

The optimal y is negative whenever constraints are violated, as in our example. Since
the absolute value of y denotes the maximum weighted distance between the desired and the
actual frequency responses, maximizing y produces a filter with the minimum error, which

8 gmeteor

is what we want. Designs where the optimal y is negative are instances of the approximation
design style. (In Section 2.7 [Example 6], page 12, we show an example of a limit-style design
where the constraints are not violated and y is positive. Even in that case, maximizing y
turns out to be the right design criterion.)

2.4 Example 3

This example introduces point constraints. Even though a frequency response can only
be approximated over a whole band, it is usually possible to specify an exact value of
H(f) for a single frequency f , or for a finite set of frequencies. In this example, we design
the same filter as in Section 2.3 [Example 2], page 6, but in addition, we specify that
H(0) = 1 and H(25) = 0 exactly. These constraints are useful whenever we have noise at a
known frequency (in our case, 25Hz) that we want to eliminate completely. The following
specification file describes this design.

(title "A simple filter III")

(verbose #t)

(cosine-symmetry)

(filter-length 10)

(sampling-frequency 60)

(limit-= (band 0 10) 1 .2)

(limit-= (band 20 30) 0)

;; We now constrain H(0) to be exactly 1. We accomplish this effect

;; by setting weight = 0, and specifying the constraint for a point,

;; not for a band.

(limit-= 0 1 0)

;; another point constraint at 25 Hz. H(25) = 0.

(limit-= 25 0 0)

(output-file "example-3.coef")

(plot-file "example-3.plot")

(go)

Chapter 2: Tutorial 9

A graph of the frequency response follows.

0 5 10 15 20 25 30
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f

H
(f

)

A point constraint is specified as in the command (limit-= 25 0 0). Note that we
specify a single frequency 25 instead of a band. gmeteor interprets this single frequency as
the band (band 25 25). Second, we set the weight to 0, so that the constraint cannot be
violated. (See Section 2.3 [Example 2], page 6, for a discussion about weights.) With this
change, we have |H(25)| = 0 exactly, while in Example 2, we had |H(25)| = 0.008.

2.5 Example 4

The goal of this example is to teach you some basics of the Scheme programming language,
because gmeteor will be much more useful to you once you know Scheme. To learn Scheme,
I recommend the book Structure and Interpretation of Computer Programs, by Hal Abelson
and Gerry Sussman—probably the best Computer Science book ever written.

In this example, we want to design a partial-band differentiator, which is a filter with
sine symmetry whose frequency response H(f) is proportional to the frequency f in the
band [0..10] of interest. In previous examples, the frequency response was constant within
this band, but now we want to specify a nonconstant frequency response. To this extent,
the bound in limit-= will be a function rather than a number. The following specification
file implements the design.

(title "A simple filter IV")

(verbose #t)

(sine-symmetry)

(filter-length 10)

(sampling-frequency 60)

(define 2pi (* 8 (atan 1)))

(limit-= (band 0 10) (lambda (f) (* 2pi f)))

(limit-= (band 20 30) (lambda (f) 0))

(output-file "example-4.coef")

10 gmeteor

(plot-file "example-4.plot")

(go)

A graph of the frequency response follows.

0 5 10 15 20 25 30
−10

0

10

20

30

40

50

60

70

f

H
(f

)

The “passband” [0..10] is specified by the expression

(limit-= (band 0 10) (lambda (f) (* 2pi f)))

This expression states that the frequency response must be equal to 2πf in the band
[0..10]. (In previous examples, we used the constant value 1.) lambda is the magic Scheme
keyword that creates functions. In Scheme, the syntax (lambda (var) body) produces a
function of the variable var that, when applied to an argument, evaluates body after binding
the variable var to the argument. In our case, the variable is f, and the body (* 2pi f).

Once you have a function, how do you apply it? If fun is a function and expr is any
expression, the syntax (fun expr) denotes the application of fun to the value of expr.
Functions in Scheme are not restricted to only one argument. For example, sine-symmetry
is a function of zero arguments, and limit-= is a function of two arguments. Indeed,
all expressions that we called commands in Section 2.2 [Example 1], page 4 are function
applications.

You can now play with gmeteor and build your own frequency responses. To this
extent, you need to know that +, -, *, and / are functions of two arguments, so that (+ 1

2) evaluates to 3. For example, you can build a filter with response (lambda (f) (* (* 2pi

f) (* 2pi f))) (a double differentiator). Scheme provides many other primitive functions
that you can use, e.g., sin, cos, log, and exp. For a complete list of all Scheme primitives,
see the paper Revised^5 Report on the Algorithmic Language Scheme, by Richard Kelsey,
William Clinger, and Jonathan Rees, editors.

2.6 Example 5

This example introduces concavity constraints. With gmeteor, you can impose constraints
on the second derivative of the frequency response, in addition to constraints on the fre-
quency response itself. These constraints are useful because a frequency response H that is

http://www.cs.indiana.edu/scheme-repository/doc.standards.html

Chapter 2: Tutorial 11

either concave-up (i.e., H ′′ ≥ 0) or concave-down (i.e., H ′′ ≤ 0) in a certain band tends to
be “flat” in that band (i.e., it does not exhibit ripples). (You can also impose constraints
on the first derivative, but they do not appear to be very useful.)

In this example, we design the low-pass filter from Section 2.2 [Example 1], page 4, but
in addition we want a flat passband response. To accomplish this effect, we constrain the
response to be concave-down in the passband.

(title "A simple filter V")

(verbose #t)

(cosine-symmetry)

(filter-length 10)

(sampling-frequency 60)

;; magnitude constraints

(limit-= (band 0 10) 1)

(limit-= (band 20 30) 0)

;; This command states that H(f) must be concave down in the passband.

;; In other words, we demand that H’’(f) <= 0 for f in the passband.

(concave-down (band 0 10))

(output-file "example-5.coef")

(plot-file "example-5.plot")

(go)

A graph of the frequency response follows.

0 5 10 15 20 25 30
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f

H
(f

)

The expression (concave-down band) specifies that the frequency response should be
concave-down in the band band. The analogous command ‘concave-up’ does what you
would expect. gmeteor also provides two commands ‘downward’ and ‘upward’ to impose
constraints on H ′(f).

12 gmeteor

2.7 Example 6

This example discusses an instance of the limit style of filter design. In previous exam-
ples, we specified constraints on the frequency response that were impossible to satisfy.
gmeteor’s goal was to find the feasible frequency response with the smallest deviation from
the constraints. In this example, we change our approach: we specify constraints that can
be satisfied, and let gmeteor find a frequency response that satisfies the constraints.

We design a low-pass filter with the following properties: 0.99 ≤ H(f) ≤ 1.01 in the
passband [0..10], and |H(f)| ≤ 0.1 in the stopband [20..30]. The stopband ripple must be as
small as possible, but we let the passband ripple touch the constraints if necessary. These
goals are accomplished by the following specification file.

;; Constraint-based filter design.

(title "A simple filter VI")

(verbose #t)

(cosine-symmetry)

(filter-length 10)

(sampling-frequency 60)

;; the passband response is constrained within [0.99, 1.01], and it

;; is allowed to touch the constraints because the weight is 0.

(limit-<= (band 0 10) 1.01 0)

(limit->= (band 0 10) 0.99 0)

;; the stop response is constrained within [-0.1, 0.1], and it

;; is pushed away from the constraints as far as possible, because

;; the weight (1) is nonzero.

(limit-<= (band 20 30) 0.1)

(limit->= (band 20 30) -0.1)

(output-file "example-6.coef")

(plot-file "example-6.plot")

(go)

Chapter 2: Tutorial 13

A graph of the frequency response follows.

0 5 10 15 20 25 30
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f

H
(f

)

The expression (limit-<= band value) specifies that the frequency response should be
at most value in the band band. Similarly, the expression (limit-> band value) establishes
a lower bound.

How does gmeteor react to this specification file? Recall, from the discussion about
weights in Section 2.3 [Example 2], page 6, that gmeteor converts the specifications into
the four inequalities H([0..10]) ≤ 1.01, H([0..10]) ≥ 0.99, H([20..30]) + y ≤ 0.1, and
H([20..30]) − y ≥ − 0.1. (The weight is zero for the first two inequalities, and there-
fore the deviation parameter y does not appear in them.) Recall also that gmeteor designs
H(f) so as to maximize the deviation parameter y. In our case, y can be interpreted as
“distance from the stopband bounds,” and its maximum value is y = 0.069 (as shown in
the output file). Because the passband weights are 0, gmeteor does not attempt to push
H(f) away from the bounds in the passband, and the passband ripple amplitude turns out
to be exactly 0.01.

This style of constraint-based filter design is the one described in the METEOR paper.
In fact, METEOR does not allow equality constraints, nor does it allow negative values of y.
I find the approximation style easier in many cases, because it requires only one constraint
instead of a pair of upper and lower bounds. On the other hand, the limit approach is more
powerful, as shown in the METEOR paper. Consequently, gmeteor supports both styles,
and you can choose the design approach that best suits your problem.

2.8 Example 7

In this example, we design the zero-order-hold compensator example from Oppenheim and
Schafer, Discrete-Time Signal Processing, 1st ed., Section 7.7.2.

The specifications are as follows. The sampling frequency is 2π, the passband is [0..0.4π],
the stopband is [0.6π..π]. The frequency response is not flat in the passband, but it has the
form H(f) = (f/2)/(sin (f/2)). (See Oppenheim and Schafer for why you may want such
a filter.) The stopband error is 1/10 of the passband error. The specification file follows.

14 gmeteor

(title "Compensation for Zero-Order Hold")

(cosine-symmetry)

(filter-length 29)

(define pi (* 4 (atan 1))) ; pi = 3.14...

(define 2pi (* 2 pi)) ; 2pi = 2 * pi

(define (*2pi x) (* 2pi x)) ; a function that multiplies x by 2pi

(sampling-frequency (*2pi 1))

(define passband (band 0 (*2pi 0.2)))

(define stopband (band (*2pi 0.3) (*2pi 0.5)))

(limit-= passband (lambda (f)

(if (= f 0)

1

(/ (/ f 2) (sin (/ f 2))))))

(limit-= stopband 0 .1)

(output-file "example-7.coef")

(plot-file "example-7.plot")

(go)

A graph of the frequency response follows.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f

H
(f

)

This example does not really introduce any new gmeteor concept, but it shows some
more useful Scheme constructs.

Chapter 2: Tutorial 15

The expression (define var value) defines a new variable var with value value. The
similar expression (define (var arg) body) defines a function, and it is equivalent to
(define var (lambda (arg) body)).

A variable can contain an arbitrary object. In particular, the expression

(define passband (band 0 (*2pi 0.2)))

defines the variable passband and sets it value to the band (band 0 (*2pi 0.2)). This
construct is useful if the passband is used in many places.

The expression (if test if-expr else-expr) denotes a conditional expression. In our
example, we use it to avoid division by 0.

Chapter 3: gmeteor Reference 17

3 gmeteor Reference

[This chapter is in progress.]

This chapter documents all the functionality of gmeteor.

To run gmeteor, you must prepare a specification file, which is a Scheme program that
calls gmeteor as a library. gmeteor provides two alternative interfaces that the specification
file can use. The simple interface (the one described in Chapter 2 [Tutorial], page 3) is easy
to use, but it lets you design only one filter per invocation of gmeteor. You will probably
use this interface in most cases. The message-passing interface is more complicated, but it
lets you design many filters at the same time. In this interface, each filter is an abstract
data type (an “object”, if you wish) that reacts to messages.

The rest of this chapter is organized as follows. Section 3.1 [Optimal Filters], page 17 de-
scribes the filter-design problem solved by gmeteor precisely. Section 3.2 [Simple Interface],
page 18 documents gmeteor’s simple interface. Section 3.3 [Invoking gmeteor], page 20 de-
scribes gmeteor’s command-line options, which are also part of the simple interface. Finally,
Section 3.4 [Message-Passing Interface], page 21 documents the message-passing interface.

3.1 Optimal Filters

This section describes the algorithm used by gmeteor to design a filter. This algorithm was
originally described in the paper METEOR: a Constraint-based FIR Filter Design Program,
by K. Steiglitz, T. W. Parks, and J. F. Kaiser, published in IEEE Trans. Signal Processing,
vol. 40, no. 8, pp. 1901-1909, August 1992.

The inputs to the algorithm are the filter length l, the symmetry (either sine or cosine
symmetry), the sampling frequency, the grid density, and a list of specifications. Each
specification consists of a band B, a weight w(f), and a constraint that has one of the
following six forms: H(f) ≤ u(f), H(f) ≥ u(f), H ′(f) ≤ 0, H ′(f) ≥ 0, H ′′(f) ≤ 0, or
H ′′(f) ≥ 0. We think of each specification as a compact representation for an infinite
number of constraints, one for each frequency f in the band B.

The algorithm begins by rewriting the specifications as follows. Constraints of the form
H(f) ≤ u(f) are rewritten as H(f) + w(f)y ≤ u(f). Constraints of the form H(f) ≥ u(f)
are rewritten as H(f) − w(f)y ≥ u(f). In the other four cases (specifications on the
derivatives of H(f)) the constraint is left unchanged and the weight is ignored.

Next, from the filter length, symmetry, and sampling frequency, gmeteor derives an
analytic expression for H(f) in terms of the filter coefficients hi. This analytic expression
is the discrete-time Fourier transform of the hi’s, but without diving into too many details,
we can simply state that H(f) has the general form H(f) =

∑
i hit(i, f), where t is some

function. The important property is that, for a fixed f , H(f) is a linear combination of the
filter coefficients.

At this point, gmeteor solves the following optimization problem: find the filter coef-
ficients hi’s so as to maximize y, subject to the constraints rewritten as discussed above.
This optimization problem has an infinite number of constraints. To solve it, gmeteor
samples the constraints on a finite grid of frequencies. The grid is determined by the grid-
density parameter, which specifies the number of grid points in the range [0..F/2]. After
this sampling, the filter-design problem has been reduced a linear-programming problem,
which gmeteor solves by means of the dual simplex algorithm. (I believe it is possible to

18 gmeteor

solve the unsampled continuous problem using symbolic algebra and a modification of the
revised dual simplex algorithm, but the finite algorithm works well already.)

3.2 Simple Interface

This section describes gmeteor’s simple interface. The interface consists of a library of
Scheme functions that you can call, and of some global variables that you can access. For
ease of reference, we subdivide the functions into three sets. The first set of functions
(see Section 3.2.1 [Filter Parameters], page 18) lets you specify filter parameters such as
the filter length, symmetry, and sampling frequency. The second set (see Section 3.2.2
[Specifications], page 18) is used to specify the desired bounds on the frequency response.
The third set (see Section 3.2.3 [Miscellaneous Commands], page 19) contains miscellaneous
functions that control the format of the output and similar parameters.

3.2.1 Filter Parameters

[Command]filter-length n
This command sets the filter length to n. The filter length is the number of filter
coefficients.

[Command]sampling-frequency f
This command sets the sampling frequency to f. All other frequencies in a specification
file must belong to the band [0..f /2].

[Command]sine-symmetry
[Command]cosine-symmetry

The command (sine-symmetry) specifies that the frequency response H(f) is an
odd function, i.e., H(−f) = −H(f). The command (cosine-symmetry) specifies
that the frequency response H(f) is an even function, i.e., H(f) = H(f). The default
is (cosine-symmetry).

[Command]title t
Set the filter title to t, which is a string. The title is used for documentation purposes
only. If unspecified, the title equals the string "UNTITLED".

3.2.2 Specifications

[Function]band a b
Create a band, i.e., a representation for the interval of frequencies [a..b].

[Command]limit-< band u
[Command]limit-< band u w
[Command]limit-<= band u
[Command]limit-<= band u w

These commands establish a specification of the form H(f) ≤ u(f) in the band band.
There is no difference between limit-< and limit-<=. The weight w is an optional
function of the frequency f . The default weight is 1. If band is a number, it is
converted internally into the band consisting of the single frequency band. If u is
a number, it is converted internally into the constant function (lambda (f) u). A
similar conversion applies to the weight.

Chapter 3: gmeteor Reference 19

[Command]limit-> band u
[Command]limit-> band u w
[Command]limit->= band u
[Command]limit->= band u w

These commands establish a specification of the form H(f) ≥ u(f) in the band band.
The remaining parameters are as in the command limit-<.

[Command]limit-= band u
[Command]limit-= band u w

Shortcut for the sequence of commands (limit-< band u w) and (limit-> band u

w).

[Command]upward band
[Command]downward band

These commands establish a specification of the form H ′(f) ≥ u(f) and H ′(f) ≤ u(f)
(respectively) in the band band.

[Command]concave-up band
[Command]concave-down band

These commands establish a specification of the form H ′′(f) ≥ u(f) and H ′′(f) ≤
u(f) (respectively) in the band band.

3.2.3 Miscellaneous Commands

[Command]output-file n
This command sets the name of the output file to n. If n is the false value #f, gmeteor
produces no output. If n is the string "-", gmeteor outputs to standard output. The
default value is "-".

The output file contains the filter coefficients, and additional information when the
verbose mode is on.

[Command]plot-file n
This command sets the name of the plot file to n. If n is the false value #f, gmeteor
produces no plot file. If n is the string "-", gmeteor outputs the plot file to standard
output. The default value is #f.

The plot file contains a series of lines of the form fH(f), for various frequencies f
equispaced between 0 and half the sampling frequency. The spacing is controlled by
the plot grid density parameter.

[Command]plot-absolute b
If b is the true value #t, then gmeteor plots the absolute value of the frequency
response in the plot file. The default is to plot the signed value, which corresponds
to (plot-absolute #f).

[Command]verbose b
If b is the true value #t, then gmeteor prints the design parameters to the output file,
in addition to the filter coefficients. The default is not to print additional information,
which corresponds to (verbose #f).

The additional information includes the title, symmetry, filter length, grid density,
and the list of specifications.

20 gmeteor

[Command]grid-density n
Set the grid density for the filter. gmeteor samples all frequencies on a finite grid
consisting of n frequencies between 0 and half the sampling frequencies. If unspecified,
the grid density is about ten times the filter length.

[Command]plot-grid-density n
Set the plot grid density for the filter. For the purposes of producing a plot file,
gmeteor samples all frequencies on a finite grid consisting of n frequencies between
0 and half the sampling frequencies. If unspecified, the plot grid density equals the
grid density.

[Command]go
Compute the optimal filter and print the output files. gmeteor does not compute
anything unless this command is given.

The rationale for an explicit (go) command is that you may want to perform some
processing after the filter has been computed. For example, you may want to out-
put the filter coefficients using your own routine written in Scheme. Without (go),
gmeteor would not know whether you are still specifying the filter or whether you
need to know the result.

3.2.4 Variables

After the (go) command, gmeteor stores the result of the computation into certain global
variables, which you can access for further processing.

[Variable]*result*
The result of the filter optimization problem. This variable contains one of the sym-
bols ’optimal, ’infeasible, or ’unbounded. If the filter was computed correctly,
the value is ’optimal. Otherwise, either there is no solution (’infeasible) or there
are too many solutions (’unbounded).

[Variable]*coefficients*
A Scheme vector containing the filter coefficients.

[Variable]*y*
The final value of the deviation parameter y.

3.3 Invoking gmeteor

The general usage of gmeteor is

Usage: gmeteor [OPTION...] INPUT-FILE

For your convenience, gmeteor accepts some parameters both from the command line
and from the specification file. In case of conflict, the command-line value takes precedence.
A list of options follows.

-A

--plot-absolute

Same as (plot-absolute #t).

Chapter 3: gmeteor Reference 21

-d n

--plot-grid-density=n

Same as (plot-grid-density n).

-g n

--grid-density=n

Same as (grid-density n).

-n n

--filter-length=n

Same as (filter-length n).

-o file

--output-file=file

Same as (output-file file).

-p file

--plot-file=file

Same as (plot-file file).

-s n

--sampling-frequency=n

Same as (sampling-frequency n).

-S

--plot-signed

Same as (plot-absolute #f).

-v

--verbose

Same as (verbose #t).

-q

--quiet Same as (verbose #f).

--help Print a list of options.

-V

--version

Print gmeteor’s version.

3.4 Message-Passing Interface

[To be written]

Chapter 4: Installation 23

4 Installation

[This chapter is very preliminary. Please provide feedback if gmeteor works for you.]

To install gmeteor, you need guile-1.3 or newer installed in your system. Then type

bash$./configure

bash$ make

bash$ make install

gmeteor works only if it has been installed, because it needs to load auxiliary Scheme
files and a shared library. Sorry about that.

gmeteor has been tried succesfully on RedHat Linux 5.2 (with guile-1.3), RedHat
Linux 6.0 (with guile-1.3.4), and Linux PPC (with guile-1.3.4).

Chapter 5: License and Copyright 25

5 License and Copyright

gmeteor is copyright c© 2000 Matteo Frigo, c© 2000 Biomedin s.r.l.

gmeteor is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA. You can also find the GPL on the GNU web site.

When you design a filter with gmeteor, neither the filter specification nor the filter
coefficients consitute a work based on gmeteor. Consequently, the General Public License
does not impose any restrictions on the use and distribution of said filter specification and
coefficients.

http://www.gnu.org/copyleft/gpl.html

Chapter 6: Acknowledgments 27

6 Acknowledgments

Thanks to Giuseppe Torresin (my boss) for letting me work on gmeteor and release it.

gmeteor uses a simplex solver called LPPRIM, which has been made available in the
public domain by the Division of Information Technology (DoIT) at the University of Wis-
consin, Madison.

The examples in the tutorial chapter were for the most part inspired by the METEOR
paper by Steiglitz et al.

The file f2c.h comes from the f2c distribution, by S. I. Feldman, D. M. Gay, M. W.
Maimone, and N. L. Schryer.

gmeteor uses many tools from the GNU project, including Guile, autoconf, automake,
texinfo, and libtool.

Thanks to Prosa/Linuxcare for hosting the gmeteor web and ftp sites.

Thanks to Steven G. Johnson and to Sandra for reviewing this manuscript. All mistakes
are my own, however.

